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The rate v of bimolecular chemical reaction A + A = B + C  is analyzed for 
simple models of reactive cross sections. Collisions of particles colliding with 
energy E larger than a relatively low characteristic energy EL are either 
non-reactive (reversed Prigogine-Xhrouet model = rPX) or the ability to react 
is decreasing for E > EL (reversed line-of-centres model = rLC). After solution 
of the Boltzmann equation analytical expressions for the distribution function 
f and the rate coefficient k have been derived. It is shown that the Arrhenius 
activation energy EA is small and even negative for sufficiently small EL. The 
non-equilibrium corrections to v are small. 
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1. Introductory remarks and definitions 

As follows from the kinetic theory [ 1, 2] a chemical reaction in dilute gas can be 
analyzed on the basis of Boltzmann equation [3]. Such an analysis is the simplest 
if the reaction is analyzed in such a stage that the products may be neglected 
[3-5]. The neglection of products has been thoroughly analyzed by Pyun and 
Ross [6]. This neglection has been introduced in many other papers [7-18] 
because it permits to simplify the description of various non-equilibrium 
phenomena in a chemically reacting gas. The equilibrium description of the rate 
coefficient for numerous models of reactive cross sections was presented, e.g. by 
Menziger and Wolfgang [19], Le Roy [20], and Stiller and Naumann [21]. 
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For the simplest chemical reaction 

A + A ~ B + C  (1) 

for which the products B and C can be neglected the Boltzmann equation can 
be written with standard notation in the following form [ 1, 11 ] 

d= 
at J /  

- I f fflo're(g,~)g df~ de,, (2) 

where f and f '  denote the molecular velocity distribution function of component 
A before and after collision, respectively, t is the time, O'er(g, f~) and o-~e(g, f~) 
are the differential elastic and reactive cross sections, respectively. The solid angle 
f~ specifies the orientation of the relative velocity vector after collision 

g'= c~- c' (3) 

to the initial relative velocity 

g = cl - c. (4) 

The rate v of chemical reaction is 

dn=kn2=If f fflo-re(g,~)gd~dcldc, (5) V=-d--- f 
where n is the number density of component A and k denotes the rate coefficient 
of chemical reaction 

k=(1/n2) f f f f f ,  o-~(g,~)gd~de, dc. (6) 

In the case of generalization of hard spheres model the differential elastic and 
reactive cross sections may be expressed by probabilities ae~(g) and a,e(g) of 
elastic and reactive collisions, respectively and by the diameter of hard sphere 
in the following way 

O'el(g ) = [ O'el(g , ~'~) dO = ael(g)qrd 2 (7) 
3 4  0r 

O're(g) = r ~ ~'~) d~~ = are(g) 7rd 2 , (8) 
d 4  l r  

where tre~(g) and tr~e(g) are the total elastic and reactive cross sections, respec- 
tively, whereas 

ael(g ) --l- are(g) ---~ 1. (9) 

The probability are(g) can be represented as a function of relative kinetic energy 
of approaching particles 

E = (m/4)g 2, (10) 
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where m is the mass of  the particle and additionally as a function of the steric 
factor sv connected with an orientation of particles during the collisions. 

Usually the dependence of the reactive cross section on energy can be represented 
in the following simplified way [3, 5]: It is zero for energies smaller than a 
threshold energy Eo (the barrier of the reaction) and greater than zero for higher 
energies. According to Eq. (8) the reactive cross section is simply related to the 
probability of  reactive collisions. Such probabilities for the models used in [3, 5] 
are shown in Fig. 1. The maximum value of the probability for these models 
equals 1 although in more general case it can be equal to sF-< 1. Such cross 
sections are limited with the idea that there must be a minimum relative kinetic 
energy of the particles in order to react. In the region E < Eo only elastic collisions 
occur. Many gas reactions between molecules or molecules and radicals can be 
approximately described by such and similar simple cross sections [21]. 

It is known, however, that e.g. combination or recombinations of  radicals or 
some molecule reactions can occur mainly for low energies E. For such reactions 
several authors (see, e.g. [9, 10, 13, 22-26]) performed their calculations of the 
rate coefficient of chemical reaction both in equilibrium and in reaction-induced 
non-equilibrium situations. Latter point can be important for reactions with low 
threshold energy Eo<< kBT, where kB is the Boltzmann constant and T denotes 
temperature. Because for such reactions E0 does not appear  in a formula for 
reactive cross section this may make an impression that the threshold energy is 
negligibly small and therefore also the activation energy can be neglected. That 
is why such reactions were treated as reactions without activation energy [9, 11]. 
Although for the line-of-centres model [5] in the description of chemical reaction 
with the use of  the equilibrium velocity distribution functions for the large 
Arrhenius activation energies EA the quantities Eo and EA are nearly the same 
[19-21, 27] it seems to be doubtful if neglection of Eo in a formula for reactive 
cross section is in general case equivalent with EA = Oo 

Fig, 1. "High-energy" cross sections 
O're = "B-d2a re (E)  for translationally 
driven reactions, a crpx (Prigogine- 
Xhrouet model [1]); b trLC (line-of- 
centres model [2]) 
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In this paper we intend to analyze more carefully equilibrium and non-equilibrium 
description of reactions which proceed in a low energy region of  cross sections. 
Namely, we want to describe such reactions which can occur for low energies, 
but will be stopped or gradually diminished for energies higher than a relatively 
low characteristic energy EL. Such reactions present in a sense the reverse situation 
to those of Fig. 1. In order to study such low energy reactions we intend to use 
the simple models of reactive cross sections. According to Eq. (8) for the situations 
described above we can introduce two models: (1) The reversed Prigogine- 
Xhrouet model (shortly denoted by indices rPX), and (2) the reversed line-of- 
centres model (denoted by indices rLC) in the following way 

Cqex(g) = aex(g ) = 0 

{11- aeLc(g) = 1 
a r t c ( g )  = - O q ~ c ( g )  = EL/E = g~/g2 

E<-EL 
(11) 

E >  EL 

E<_EL 
(12) 

E >  EL,  

where OZpx(g ) and aLC(g  ) a re  the probabilities of reactive collisions for Prigogine- 
Xhrouet model and line-of-centre model, respectively, and gL is the value of g 
corresponding to E = EL (see Eq. (10)). After introduction of the steric factor 
the total reactive cross section for these models are 

O.rvx(g) = { ;  v~rd2 = ~'dr2e 

2 2 
I Sv~'d  = ~dr~ 

2 2 2 O-rLc(g) [sFrrd g L / g  = 2 2 2 rrdregL/ g = 7rd2r E 

E<-EL 
(13) 

E > E L  

E <- EL (14) 
E >  EL ,  

where dre is the diameter of the reactant simply connected with the diameter of 
hard sphere d and the steric factor SF 

2 dre = SF d2. (15)  

The latter models are shown in Fig. 2. A comparison of Fig. 2 with Fig. 1 makes 
possible to see all the differences between the models discussed. In order to make 

&re(E) l reoctions 
l~e~astic collisions 

EL 

&re(E) I reoctions 
I ~ c ~ l  isions 

EL 

a 

g 

b 

g 

Fig. 2. "Low-energy" cross sections 
o-r~ = 7rd2are(E) for a o're x (reversed 
Prigogine-Xhrouet model); b OrE c 
(reversed line-of-centres model) 
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this comparison transparent we have introduced in Figs. 1 and 2 and in Eqs. (11) 
and (12) sv = 1 although in general sv <- 1. 

The aim of this paper is to analyze the low energy models introduced in Eqs. 
(11)-(15) and shown in Fig. 2, i.e. the rPX- and rLC-models. We shall perform 
this analysis in order to derive the expressions for the rate coefficients k of 
chemical reactions. After using of Present's solution [5] of the Boltzmann equation 
(in Sect. 2) we shall first analyze (in Sect. 3) k (~ obtained with the equilibrium 
velocity distribution functions and then, (in Sect. 4) k ~ is obtained with the 
non-equilibrium velocity distribution functions. The analysis of k (~ will enable 
us to see the relations between the Arrhenius activation energy and EL, whereas 
from the analysis of k (1) we shall evaluate the non-equilibrium corrections to the 
rate coefficients. Some final remarks will be given in the discussion (Sect. 5). 

2. The solution of the Boltzmann equation 

In order to get the solution we follow the way chosen by Present [5]. We write 
the velocity distribution function as 

f =f(o)+f(1)=f(o)(1 + 6),  (16) 

where f(o) is the Maxwell-Boltzmann equilibrium velocity distribution function 

f(o)= n(m/2crkBT)3/2 exp ( -mc2 /2kBT) ,  (17) 

whereas f(1) is the first non-equilibrium correction to f(m. We use the result of 
Sonine polynomials expansion of ~b from [3, 5] which can be written as 

4, = a2S~2/)2( (~2) (18) 

where 

cg2= mc2/2kBT (19) 

S(2) _ 15/8 - (5/2) ~2+ (1/2) ~4. (20) 1/2 - -  

As follows from [3, 5] we can calculate aa from the equation 

a2 = oe2/a22, (21) 

where 

a22 = 4n2d2('n'kBT/m) '/2 (22) 

and 

c~2 = - ( ~ 2 / 6 4 ) ( m /  ~rk.r)3/2115K3 - 5 ( m / k . r ) K 5  - (1 /4 ) (m/kBr f lK7] ,  (23) 

where 

Kn = exp ( -mg2/4kBT)are(g)g"  dg. (24) 
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Similarly to Eq. (16) f o r f  we can write the rate v of  chemical reaction and its 
rate coefficient k as follows [28] 

v = v(~ v (1) (25) 

k = k (~ + k (~), (26) 

where as shown already by Present [5] 

v(~176 f I f(~176 12)gd~ dcadc 

= (1/2)'n'2n2d2(m/r (27) 

and 

v (~) = nak (1) = -2a2a2  

= -v(~ (28) 

From the equations presented in this section and the definitions for the models 
discussed in the previous section it is possible to perform all necessary calcula- 
tions. 

3. The rate of  chemical reaction calculated for equilibrium velocity distribution 
funct ion-  relations between Arrhenius activation energy and the energy Er 

In order to derive the expressions for v (~ and k (~ we use Eqs. (27) and (24) for 
the models defined in Eqs. (11)-(15). According to the explanation given in the 
description of Figs. 1 and 2 we introduce in Eq. (24) for the rPX-model and the 
rLC-model  

%e(g) = sFa(g). (29) 

In order to make the descriptions shorter we introduce the reduced energies e as 

e = E/k~T.. (30) 

After performing necessary integrations we get 

v(o) _ v(o) .2 = 4~dZen2(,rrkBT/m)1/2[1 _ (1 + eL) exp (--eL)] (31) 
r P X  - -  ~ r P X  ~ 

(o L v(o) , 2 _  4~dZen2(~rk, T/rn)l/2[1 - exp ( -eL)] .  (32) 
/ ) r L ~  ~ ~ r L C  I~ - -  

It is worthwhile to observe that the fraction of reactive collisions /=re is 

Fre = v(~ lim v (~ 
eL- -~oo  

(33) 
s F = l .  

From Eqs. (30)-(33) and (15) it follows that 

F ~  x = st[1 - (1 + eL) exp (--eL)] (34) 

FrLC sv[1-exp  (--eL)]. (35) r e  
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The quantities Fr~ ex and F ~  c may be useful in discussion of non-equilibrium 

effects. 

The Arrhenius activation energy EA is defined by equation 

k = Ao exp ( - E A / k B T )  = Ao exp (--eA), (36) 

where Ao is the so-called preexponential factor. From this definition it follows that 

EA = kBT 2 d In k /  dT. (37) 

From Eqs. (37), (31) and (15) after assuming that the steric factor does not 
depend on temperature we obtain 

e ~ h  1 e~ = - +  (38) 
2 l+eL- -expeL '  

whereas from Eqs. (37) and (32) in the same way we get 

e~  c 1 eL =--+ (39) 
2 1--exp eL" 

Similar relations between the Arrhenius activation energy and the threshold 
energy Eo has been already derived for various "high-energy" cross sections 
models by Menziger and Wolfgang [19], Le Roy [20] and Stiller [29]. From Eqs. 
(38) and (39) it can be easily seen that 

lim e ~  x =  _3 (40) 
EL--> 0 

lim 8~ LC= -�89 (41) 
eL--~ 0 

It means that for these models if the characteristic energy EL is sufficiently low 
the Arrhenius activation energy can be negative. The conditions for the negativity 
of EA are: 

2 eL exp (--eL) 1 
> (rPX) (42) 

1- - ( l+eL)  exp(--eL) 

eL exp (--eL) 1 
/ -  - (rLC).  (43) 

1 - e x p  (--eL) 2 

These results are reasonable because for the models discussed in this paper the 
rate coefficient of chemical reaction should decrease with the increase of the 
temperature, contrary to the rate coefficient of many chemical reactions in which 
only the collisions of molecules possessing relative velocities large enough are 
reactive. 

From Eqs. (38) and (39) it can be also seen that 

lim e ~  x lim rLC 1 = eA = ~. (44) 
eL~OO EL-+00 

This result has no physical value unless the steric factor is not small enough. 
From comparison of Eqs. (40), (41), and (44) it follows that the Arrhenius 
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EA/kBT' 
05 

rLC rPX 

0 ~EL/ka T 

-05 

-1.0 

-15 

Fig. 3. Reduced activation energy 8 A = 

EA/kBT versus the reduced low 
characteristic energy e L = Er/kBT for the 
rPX- and rLC-models 

1~' rLC activation energies E ~  x and Jt~ A increase with the increase of EL. Fig. 3 gives 
the numerical results for EA/kBT against EL/kBT for the both models. The 
resulting ranges of negative activation energies are: in the rPX-model for 
E~PX/kBT<3.215 (i.e. for E~PX<8.0kJ/mole at 300K) and in the rLC-model 
for E~LC/kBT < 1.255 (i.e. for E ~ L C <  3.1 kJ/mole at 300 K). 

In such an analysis it is also convenient to write down Eqs. (38) and (39) in the 
following way 

1 E L E~APX/EL = - - 4  (45) 
2eL l + S L - - e x p  eL 

1 1 E~UC/EL = -~ (46) 
2st 1 - e x p  eL" 

ErLC/E is Fig. 4 shows EA/EL against kBT/EL in the rLC-model. The ratio A / L 
negative for temperatures T greater than 401 K, 600 K, and 802 K if EL is 
1 kJ/mole,  1.5 kJ/mole,  and 2 kJ/mole, respectively. Similar tendencies can be 

EA/EL 
0.2 
0~ 
0 

-0.1 

rLC 
kBT/EL 

0.2 O.Z, 0.6 0 . ~ . ~  

Fig. 4. Ratio EA/E L versus kBT/E L for the 

rLC-model 
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found for the rPX model: E rfX/EL is negative for kBT/EL > 0.312, i.e. the energy 
EL must be less than 8 kJ/mole at 300 K and less than 10.7 kJ/mole at 400 K. 

4. N o n - e q u i l i b r i u m  correct ions  to the rate o f  c h e m i c a l  react ion 

The relative correction to the rate of chemical reaction can be written as 
"/~ : - - (V  -- v (O) ) / / )  ( 0 ) :  - -V(1) / /V (0) : - k ( 1 ) / / k  (0). (47)  

We shall present here the results for ~7 for the models discussed, as well as the 
expressions for a2 (see Eqs. (18) and (21)) because this quantity permits to see 
how much the velocity distribution function is changed in connection with 
chemical reaction. From Eqs. (21)-(24) and Eqs. (29), (30), (11), (12) it follows 

a~ PX = (--SF/32){--1 + [1 + eL + 8e~-- 4e 3] exp (-eL)} (48) 

and 

a~ Lc= ( - s v / 3 2 ) { -  [1 - e x p  (--eL)] +4eL(1-  eL) exp (--eL)}. (49) 

From Eqs. (47), (28), (24) and Eqs. (29), (30), (11), (12) we get the relative 
corrections to the rate of chemical reaction in the following forms 

rpx sF{-1 + [1 + eL+ 8e~ -4e  3] exp (--eL)} 2 
n = (50) 

51211 - (I + eL) exp (--eL)] 

rLC SF{ -- [1 -- exp (--eL)] + 4eL(1 -- eL) exp (--eL)} 2 
"q -- (51) 

51211 -- exp (--eL)] 

From Eqs. (50) and (51) it follows that 

lim r P X =  lim ~?rLC=0 (52) 
EL-->O EL-->O 

lim ~]rVX= lim r L c =  lim L C = s F / 5 1 2 ,  (53) 
EL--~CG EL-->O0 Eo-->O 

where L C  denotes ~ for the line-of-centres model. In Fig. 5 we present the 
fractions of reactive collisions Ere (calculated from Eqs. (34) and (35)) and the 
quantities a2 (calculated from Eqs. (48) and (49)) as functions of EL/kBT. We 

r',rPXt ~ rLCt  present these quantities as rre /SF, t~re /Sv, a~VX/sv and ar2LC/sv, respectively. 
Fig. 6 shows the relative corrections ~ to the rate of chemical reaction as functions 
of EL/kBT. We present these quantities as ~]rPX/s F and ~]rI~C/ksT, respectively. 

Fig. 5. The quantities a 2 and Fre 
(defined in the Eqs. (18) and (33), 
respectively) divided by the steric factor 
s F as functions of eL = E L / k B T  

0.~ 

Q4 

0.2 

0 

-Q2 

-0l, o2 0.4 0.6 o.8 ~.o 
EL/kBT 
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(%) 
rPX 

0.2 0.4 0.6 0.8 1.0 
EL/kaT 

Fig. 6. Relative non-equilibrium 
corrections ~7 to the rate coefficient 
(divided by the steric factor Sv) versus 
eL = EL/ kBT 

5. Discussion 

From Eqs. (31) and (32) describing the equilibrium rates v(~ and rate coefficients 
k (~ it can be seen that for the both models discussed the typical weakly tem- 
perature dependent factor 4~rdZen2(~kBT/m) 1/2 (corresponding to the collision 
frequency [1]) and steric factor appears. This factor is exactly the same as the 
preexponential  factor in the line-of-centres model [5]. The remaining factor 
[ 1 . . . .  ] deviates in a characteristic manner  from the exponential term of "high- 
energy" reactions. 

The relations between the Arrhenius activation energy EA and the energy EL can 
be seen from Eqs. (38)-(44) and Figs. 3 and 4. For EL approaching to zero the 
minimum values of EA for rPX and rLC-models are E ~  x = -1.5kBT and E~ Lc = 
-0.5kBT, respectively. For the both models EA is an increasing function of EL. 
For greater energies EL the transition from a "low-energy"- to a "high-energy"- 
reaction is performed with EA = 0.5kBT for EL--> oo. Naturally the last result has 
not physical value but it shows the tendency. The value of EA = 0 is obtained in 
the rPX-model  for E~Px.~3.21kB T and in rLC-model  for ErLLC'~l.25kB T. 
Although such values of  EL are not very low, such and even greater values of 
EL can be used in the models discussed if the steric factor SF is sufficiently small. 
As it can be seen from Eqs. (45), (46) and Fig. 4 the values of  EA and EL can 

differ considerably. 

The interesting phenomenon of occurence of the negative Arrhenius activation 
energies EA for the both low-energy models can be explained with equations 
derived by Tolman [30]. According to Tolman the quantity EA can be described 
as follows 

EA=(ER)-(a/2)RT, (54) 

where R is the universal gas constant and 

fo ~ dE E2 trR( E) exp ( -E  / RT) 
(ER) co (55) 

Io dE EtrR(E) exp ( - E /  RT) 
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The first term (En) gives the average molar energy of chemically "successful", 
i.e. reactive collisions, whereas the second term contains the average kinetic 
energy NA(3/2)kBT of a mole of the gas (NA-Avogadro's number). For "high- 
energy" reactions the nominator is obtained over integration of the integrand 
E2o-nE exp ( - E / R T )  from a threshold energy E0 to infinity leading in general 
to positive activation energies, because (En)> NA(3/2)kBT. 

In our case of "reversed" cross sections O'n, which are not equal to zero only in 
the low-energy region, the integrand is - at least for small EL - considerably 
reduced leading only to a non-vanishing contribution to (En) for the interval 
O ~ - E ~ - E L  . Therefore for small EL situations can occur in which ( E R ) <  

NA(3/2)kBT leading to negative Arrhenius activation energies. 

It is interesting that in the limiting case of EL~ 0 for the rPX-model the first 
right-hand term in Eq. (54), i.e. (ER) would be equal to zero, whereas for the 
rLC-model (ER) = NAkBT (see Eqs. (40) and (41)). We would like to emphasize 
here that the chemical reactions described by the simple models discussed should 
not be treated as "reactions without activation energy" but as "reactions with 
small activation energy" or even as "reactions with small negative activation 
energy". 

From the further analysis performed in Sect. 4 it follows that the value of quantities 
a2 characterizing the non-equilibrium corrections to the velocity distribution 
function (see Eqs. (16)-(18)) are smaller than the values of Fre defined in Eq. 
(33) as fraction of reactive collisions (compare Eqs. (48) and (49) to Eqs. (34) 
and (35) and see also Fig. 5). It means that even for relatively large Fre, say 
Fre=0.1 the value of a2 is small. We make the comparisons for sF = 1; e.g. for 
the rPX-model for e~ Px= 0.5 we get F~ Px= 0.09 and a~ Px= -0.025, whereas for 
the rLC-model for e~  LC = 0.1 ~rLC a~LC --= we get rre = 0.095 and -0.0072. It is interest- 
ing that in the limiting case of EL-~ oo the values of a2 are a;  Px= a;LC= --S~/32. 
It is worthwhile to emphasize that the effect of corrections of a2 on the velocity 
distribution function is even smaller because of existence of the Sonine polynomial 
S~/2(c~ 2) (see Eqs. (16), (18)-(20)), e.g. as follows from Eq. (20) for the typical 
value cr = 1 we get S~/2(1) = -~. That is why the results for relative correction ~7 
to the rate of chemical reaction are so small for the models discussed (see Eqs. 
(50), (51) and Figs. 5 and 6). This shows the same tendency which could be seen 
from the models discussed in [8, 9, 11, 26]. 

We would like to point out that in the models used in our paper always is 
E ~ L C >  E ~  x for all finite E L. For greater EL the "low-energy" concept remains 
valid if the steric factor SF is small enough. 

It is interesting that in these models in the limiting case of EL---> o~ corresponding 
to Eo-~0 for the line-of-centres model [5] exactly the same results for ~7 are 
obtained (see Eq. (53)). The same result for ~7 was discussed by Pyun (see Eq. 
(13) in [10]). 

Just to summarize, using very simple models we have shown that (i) in some 
reactions with low-energy cross sections the Arrhenius activation energy can be 
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very small and even be negative, (ii) the non-equilibrium corrections to the rate 
of  chemical reaction are very small similarly to those obtained for so-called 
"models with zero activation energy". 

For concrete reactions the cross sections have to be chosen more sophisticated. 
It is possible, too, to extend these calculations to more complex situations (several 
components  with reaction partners of  different masses).  
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